기본 콘텐츠로 건너뛰기

의원님들의 맛집 - 의슐랭 가이드


의슐랭 가이드


요즘 인스타그램 등 SNS를 통해 새롭게 뜨는 맛집이 많다. 믿고 가면 이쁘긴 하지만 맛은 보장 못한다.

블로그에도 맛집에 대한 후기가 많지만, 광고가 많아서 후기의 진정성이 의심되는 경우가 한두 번이 아니다.

역시나 오랜 시간 동안 맛으로 인정 받은 지역 맛집은 지역 토박이가 가장 잘 아는 법이다.

중앙일보에서 전국 지자체 기초의회 의원들의 지출 내역을 바탕으로 의원들이 자주가는 맛집을 정리해 의슐링 가이드를 발간했다.

 의슐랭 가이드 바로가기



기초의회 의원들은 지역에서 오랫 동안 활동한 사람들이 많고, 특성 상 여러 사람들과 식사를 한 경우가 많을 것이다.

그런 그들이 자주 가는 식당은 지역 내에서는 맛있다고 정평이 난 식당일 가능성이 크다.

나만 모를 수 있으랴.

나도 알아 봐야 겠다.

의슐링 가이드에서 시군구 지자체 의원님들의 맛집을 훔쳐보자.




댓글

이 블로그의 인기 게시물

웨딩 드레스 스케치 도안

웨딩 드레스샵 투어를 다니면서 샘플로 드레스를 입는 경우에는 드레스 사진을 찍지 못하게 하는 샵이 많다. ​ 그래서 투어를 돌고 나면 어떤 샵의 어떤 스타일이 신부에게 잘 어울렸는지 헷갈릴 수가 있다. ​ 하지만 투어를 다닐 때 드레스샵에서 입은 드레스의 특징과 느낌을 잘 기록하면 샵을 선택하는 데 도움이 될 수 있다. ​ 드레스 투어를 다닐 때 드레스를 기록할 스케치 도안은 아래 링크에서 확인/다운로드 할 수 있다. 웨딩 드레스 스케치 도안 확인/다운로드 하기 투어를 마친 후 드레스샵과 계약을 하고, 드디어 본식 드레스를 고를 때에는 사진을 찍을 수 있는 경우가 많다. ​ 이 땐 사진을 잘 찍어서 어떤 드레스를 입을지 잘 선택하도록 하자. ​ ​

파이썬(Python)을 이용한 피어슨 상관계수 구하기

피어슨 상관계수(Pearson correlation coefficient)는 두 변수 간의 상관관계를 확인하기 위한 가장 기본적인 방법이다. 피어슨 상관계수를 사용할 때 주의해야할 사항은 아래와 같다. - 상관관계가 인과관계를 의미하는 것은 아니다. 단순히 두 변수의 연관성을 확인하는 것이다. - 두 변수가 정규분포일 때 잘 작동한다.  - 이상치(outlier)에 민감하므로, 이상치는 제거하는 것이 좋다. - 두 변수가 완전히 동일하면 피어슨 상관계수는 1.0이다. 완전히 반대방향으로 동일하면 -1.0, 전혀 상관 없으면 0이다. 세부적인 해석은 아래와 같이 한다. - -1.0과 -0.7 사이이면, 강한 음적 선형관계 - -0.7과 -0.3 사이이면, 뚜렷한 음적 선형관계 - -0.3과 -0.1 사이이면, 약한 음적 선형관계 - -0.1과 +0.1 사이이면, 거의 무시될 수 있는 선형관계 - +0.1과 +0.3 사이이면, 약한 양적 선형관계 - +0.3과 +0.7 사이이면, 뚜렷한 양적 선형관계 - +0.7과 +1.0 사이이면, 강한 양적 선형관계 파이썬을 통해 피어슨 상관계수를 쉽게 구할 수 있다. 예시를 통해 알아보자. height, weight의 두 변수를 가지는 body라는 DataFrame을 만들었다. DataFrame을 만드는 과정은 아래의 포스트에서 확인할 수 있다.  "파이썬(Python) Pandas를 이용한 데이터프레임(DataFrame) 만들기" body 데이터프레임으로 피어슨 상관계수를 구하는 코드는 아래와 같다.  1 2 corr = body . corr(method = 'pearson' ) corr Jupyter Notebook으로 구하면 아래와 같은 결과를 얻는다. 표의 행과 열을 살펴보면 "height - height", "weight - weight"는 1이...

파이썬(Python)을 이용한 선형 회귀분석(linear regression)

파이썬의 statsmodels 라이브러리를 이용해 간단하게 선형 회귀분석을 해볼 수 있다. 예시를 통해 살펴보자. 먼저 아래와 같이 예시 데이터프레임을 만든다. 1 2 3 4 5 6 7 8 9 10 11 12 import pandas as pd height = [ 170 , 168 , 177 , 181 , 172 , 171 , 169 , 175 , 174 , 178 , 170 , 167 , 177 , 182 , 173 , 171 , 170 , 179 , 175 , 177 , 186 , 166 , 183 , 168 ] weight = [ 70 , 66 , 73 , 77 , 74 , 73 , 69 , 79 , 77 , 80 , 74 , 68 , 71 , 76 , 78 , 72 , 68 , 79 , 77 , 81 , 84 , 73 , 78 , 69 ] body = pd . DataFrame( { 'height' : height, 'weight' : weight } ) body . tail() 위 코드에 대한 설명은 "파이썬(Python) Pandas를 이용한 데이터프레임(DataFrame) 만들기" 포스팅을 통해 확인할 수 있다. 위 코드를 Jupyter Notebook을 통해 실행해보면 아래와 같이 데이터 프레임이 만들어진 것을 확인할 수 있다. 선형 회귀분석은 아래와 같은 가정을 만족해야 한다. 선형 회귀분석을 할 때에는 데이터가 아래의 가정을 따르는지 먼저 생각해보는 습관을 기르자. - 변수의 선형 상관관계 : 선형 회귀분석은 종속변수(Y)와 독립변수(X)가 선형의 상관 관계를 가지는 것을 가정한다. 선형의 상관관계가 아닐 경우, 다른 회귀분석 방법을 사용하거나, 새로운 변수를 추가하거나, 기존의 변수를 로그, 지수등의 방법으...